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Reasoning is hard
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Scientists come up with many wrong 
solutions before hitting upon the right one

(e.g., science/math questions; research problems; Chess/Go)

Chess/Go players contemplate many 
moves, looking ahead many steps

“Inference time compute”

Can we enhance LLM reasoning 
by allowing them more compute 
steps at inference time? 
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Background: RL ideas from Game Playing

(And how to think about language generation/reasoning as a policy)



Learning to play Go
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Elo-rating of World champion: 3600

Vanilla AlphaGo’s rating (deep net  to represent “policy 
function”, i.e. next-move)    3000

Monte-Carlo Tree Search: many “policy rollouts” and then use “value function”  to select 
best next move. (Policy and value functions represented by two deep nets)
Selection Expansion Evaluation Backup

Why this works: Local  
inconsistencies in policy 
and value function get ironed  
out via inference time roll-outs

Alphago rating with “inference-time compute”: 5000 



Monte-Carlo Tree Search (MCTS)
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Wikipedia summary

The focus of MCTS is on the analysis of the most promising moves, expanding 
the search tree based on random sampling of the search space. The application 
of Monte Carlo tree search in games is based on many playouts, also called roll-
outs. In each playout, the game is played out to the very end by selecting moves 
at random. The final game result of each playout is then used to weight the nodes 
in the game tree so that better nodes are more likely to be chosen in future 
playouts.

(named by Remi Coulom 2006)



Important caveat
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Go-playing uses MCTS also to improve the policy and value function 

Today we’re just considering MCTS ideas at inference time



Illustration
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Allowed moves: one step in  
any direction including diagonal

Value function:  
 (Euclidean distance to End point)−

(In general, value function needs to be learned )



Current value function and policy
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Current Policy: 
• Blue edges have probability 0.98 
• All other allowed moves have small 

nonzero probability 

Value function:  
   (Euclidean distance to end point)−

At the start the value is 

 − (9 − 0)2 + (9 − 0)2 = 162 = − 12.73

(In complicated settings, value function 
will need to be learned)



Why MCTS can improve over policy 
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Policy rollout (i.e., lookahead with 3 moves) 
reveals that diagonal move gives best  
improvement in value according to current 
value function

Takeaway: It suffices to learn a policy  
“in the right ballpark” of optimum policy, 
and then use search to improve moves 
at run-time

Some thought shows that limited lookahead cannot guarantee 
optimum move in general, since that may require looking ahead a lot of moves
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Pretraining budget of frontier LLMs = $100M 

Inference cost = $0.002 cents/token

Can we use more inference-time compute to enable better LLM reasoning? 



LLM Generation = “Policy”
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Value function = “quality” of response

• How do we learn a good value function? 
• Can we use policy rollouts at inference 

time to improve value of the generated 
response?
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Pass@k  
“Generate k answers to the query; pick the best.”  
(e.g.,  Pass@5 often much better than  Pass@1 )

PassRatio@K (when answer is a single word or number):  
Generate K answers and determine the fraction that are correct

Evaluating “Best” requires a reward Model for  correctness/quality of math Q&A 

*This is why researchers try to solve math problems in formal frameworks such as Lean

Pass@k metric

Qs: What is an obvious idea for learning a “reward” function for math?
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Pass@k  
“Generate k answers to the query; pick the best.”  
(e.g.,  Pass@5 often much better than  Pass@1 )

PassRatio@K (when answer is a single word or number):  
Generate K answers and determine the fraction that are correct

Evaluating “Best” requires a reward Model for  correctness/quality of math Q&A 

*This is why researchers try to solve math problems in formal frameworks such as Lean

Pass@k viewed as inference-time search

Hurdle in learning reward function using naive  SFT on human-labeled examples:  

• Even strong models can’t reliably tell good answers from wrong 
• Using wrong labels in SFT hurts performance super proportionately

Today’s examples (GSM8K and MATH) have autoverifiable answers



Potential power of best-of-k for math
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Best-of-256 using Llama2 7B  
beats GPT4 (early version)  
and custom math models 

PassRatio@256   much worse: 
49% on GSM8K, 8% on MATH 
  

Pass@K  PassRatio@K = Theoretical 
improvement from perfect reward model

−
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Training Reward Model (RM) for math



Outcome Supervision  (ORM)
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Given: GSM8K question, CoT answer, Final Answer. 

Just a number

Goal: Train RM to say whether final answer is correct

Training data: usual +ve and -ve examples

Note: We saw ORM implicitly in earlier settings such as RLHF  (i.e., preference pairs)



Process Supervision  (PRM)
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Given: GSM8K question, CoT answer, Final Answer

Goal: Give a reward 0/ 1/ -1 to each step i.e., (neutral/positive/negative)

The denominator of a fraction is 7 less than 3 times the numerator.  
If the fraction is equivalent to 2/5, what is the numerator of the fraction?

PRM800K:  Dataset contains 800K step-level labels 

provided by human raters across 75K solutions to 

12K problems (MATH 8K training set + 4K test questions).




PRK800K: Design Decisions
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“Convincing solutions”: Those rated highly by our current best PRM

“Wrong-answer” : solutions that reach an incorrect final answer.

(note: final answer is a number or an expression; hence auto-checkable)

PRK800 uses Convincing Wrong answers (Generate N solutions per question,  
and choose K wrong-answer solutions that were most convincing to human raters) 

“Process RM” (PRM) training: Train to predict (via log-likelihood loss)  
the human annotation for each step 

When we provide process supervision, we deliberately choose to supervise only up to 
the first incorrect step. This makes the comparison between outcome and process 
supervision more straightforward. For correct solutions, both methods provide the 
same information, namely that every step is correct. For incorrect solutions, both 
methods reveal the existence of at least one mistake, and process supervision 
additionally reveals the precise location of that mistake.




Example of answer labeled by PRM
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ORM vs PRM Training
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We train the large-scale PRM using the step-level labels in PRM800K. To ensure 
the large-scale ORM baseline is as strong as possible, we train on 100 uniform 
samples per problem from the generator. 


This means the ORM training set has no overlap with PRM800K, and it is an order 
of magnitude larger. 


Although these two training sets are not directly comparable, each represents our 
best attempt to advance the state-of-the-art with each form of supervision. We 
note that training the ORM solely on PRM800K solutions would be problematic, 
since our active learning strategy has heavily biased the dataset towards wrong- 
answer solutions.


(Text from paper)
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Discussion: What do you think could be a significant issue with 
such trained ORM/PRMs?



Results
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Note: Gap widens with more  
# of solutions to evaluate 
(PRM’s effectiveness as helper  
improves at scale)



OOD Generalization
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ORM and PRM on a held-out set of 224 STEM questions, pulled from the most 
recent AP Physics, AP Calculus, AP Chemistry, AMC10, and AMC12 exams.




Benefits of Process Supervision
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Process supervision is more likely to produce interpretable reasoning, since it 
encourages models to follow a process endorsed by humans. Process supervision is 
also inherently safer: it directly rewards an aligned chain- of-thought rather than 
relying on outcomes as a proxy for aligned behavior 

This also seems to discourage reward hacking 

Unlike many other settings, there is no alignment tax. In fact, an alignment benefit!



Discussion
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What more would you have liked the OpenAI team to report in the paper?
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Using RM’s to improve math reasoning



Best-of-N SFT
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R: reward model (ORM or PRM) for the dataset, e.g., GSM8K

Method:  
Generate many solutions for each question using  M 
Filter using RM to get a (likely) good solution for each question. 
SFT on good (question, solution) pairs

M: Model to be improved



SFT performance (y-axis is log of # params)
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Rejection Fine Tuning (RFT)
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Similar to SFT, except use many models to generate solutions, 
and use all solutions OK’ed by the RM

Diversity of solutions from different models seems to help learning over SFT
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Automated training of PRM

Next time


