
FALL 2024 COS597R:

DEEP DIVE INTO LARGE LANGUAGE MODELS

Danqi Chen, Sanjeev Arora

Lecture 14: LLM reasoning + Role of inference-time compute

https://princeton-cos597r.github.io/

https://princeton-cos597r.github.io/

Reasoning is hard

2

Scientists come up with many wrong
solutions before hitting upon the right one

(e.g., science/math questions; research problems; Chess/Go)

Chess/Go players contemplate many
moves, looking ahead many steps

“Inference time compute”

Can we enhance LLM reasoning
by allowing them more compute
steps at inference time?

3

Background: RL ideas from Game Playing

(And how to think about language generation/reasoning as a policy)

Learning to play Go

4

Elo-rating of World champion: 3600

Vanilla AlphaGo’s rating (deep net to represent “policy
function”, i.e. next-move) 3000

Monte-Carlo Tree Search: many “policy rollouts” and then use “value function” to select
best next move. (Policy and value functions represented by two deep nets)
Selection Expansion Evaluation Backup

Why this works: Local
inconsistencies in policy
and value function get ironed
out via inference time roll-outs

Alphago rating with “inference-time compute”: 5000

Monte-Carlo Tree Search (MCTS)

5

Wikipedia summary

The focus of MCTS is on the analysis of the most promising moves, expanding
the search tree based on random sampling of the search space. The application
of Monte Carlo tree search in games is based on many playouts, also called roll-
outs. In each playout, the game is played out to the very end by selecting moves
at random. The final game result of each playout is then used to weight the nodes
in the game tree so that better nodes are more likely to be chosen in future
playouts.

(named by Remi Coulom 2006)

Important caveat

6

Go-playing uses MCTS also to improve the policy and value function

Today we’re just considering MCTS ideas at inference time

Illustration

7

Allowed moves: one step in
any direction including diagonal

Value function:
 (Euclidean distance to End point)−

(In general, value function needs to be learned)

Current value function and policy

8

Current Policy:
• Blue edges have probability 0.98
• All other allowed moves have small

nonzero probability

Value function:
 (Euclidean distance to end point)−

At the start the value is

 − (9 − 0)2 + (9 − 0)2 = 162 = − 12.73

(In complicated settings, value function
will need to be learned)

Why MCTS can improve over policy

9

Policy rollout (i.e., lookahead with 3 moves)
reveals that diagonal move gives best
improvement in value according to current
value function

Takeaway: It suffices to learn a policy
“in the right ballpark” of optimum policy,
and then use search to improve moves
at run-time

Some thought shows that limited lookahead cannot guarantee
optimum move in general, since that may require looking ahead a lot of moves

10

Pretraining budget of frontier LLMs = $100M

Inference cost = $0.002 cents/token

Can we use more inference-time compute to enable better LLM reasoning?

LLM Generation = “Policy”

11

Value function = “quality” of response

• How do we learn a good value function?
• Can we use policy rollouts at inference

time to improve value of the generated
response?

12

Pass@k
“Generate k answers to the query; pick the best.”
(e.g., Pass@5 often much better than Pass@1)

PassRatio@K (when answer is a single word or number):
Generate K answers and determine the fraction that are correct

Evaluating “Best” requires a reward Model for correctness/quality of math Q&A

*This is why researchers try to solve math problems in formal frameworks such as Lean

Pass@k metric

Qs: What is an obvious idea for learning a “reward” function for math?

13

Pass@k
“Generate k answers to the query; pick the best.”
(e.g., Pass@5 often much better than Pass@1)

PassRatio@K (when answer is a single word or number):
Generate K answers and determine the fraction that are correct

Evaluating “Best” requires a reward Model for correctness/quality of math Q&A

*This is why researchers try to solve math problems in formal frameworks such as Lean

Pass@k viewed as inference-time search

Hurdle in learning reward function using naive SFT on human-labeled examples:

• Even strong models can’t reliably tell good answers from wrong
• Using wrong labels in SFT hurts performance super proportionately

Today’s examples (GSM8K and MATH) have autoverifiable answers

Potential power of best-of-k for math

14

Best-of-256 using Llama2 7B
beats GPT4 (early version)
and custom math models

PassRatio@256 much worse:
49% on GSM8K, 8% on MATH

Pass@K PassRatio@K = Theoretical
improvement from perfect reward model

−

15

Training Reward Model (RM) for math

Outcome Supervision (ORM)

16

Given: GSM8K question, CoT answer, Final Answer.

Just a number

Goal: Train RM to say whether final answer is correct

Training data: usual +ve and -ve examples

Note: We saw ORM implicitly in earlier settings such as RLHF (i.e., preference pairs)

Process Supervision (PRM)

17

Given: GSM8K question, CoT answer, Final Answer

Goal: Give a reward 0/ 1/ -1 to each step i.e., (neutral/positive/negative)

The denominator of a fraction is 7 less than 3 times the numerator.
If the fraction is equivalent to 2/5, what is the numerator of the fraction?

PRM800K: Dataset contains 800K step-level labels

provided by human raters across 75K solutions to

12K problems (MATH 8K training set + 4K test questions).

PRK800K: Design Decisions

18

“Convincing solutions”: Those rated highly by our current best PRM

“Wrong-answer” : solutions that reach an incorrect final answer.

(note: final answer is a number or an expression; hence auto-checkable)

PRK800 uses Convincing Wrong answers (Generate N solutions per question,
and choose K wrong-answer solutions that were most convincing to human raters)

“Process RM” (PRM) training: Train to predict (via log-likelihood loss)
the human annotation for each step

When we provide process supervision, we deliberately choose to supervise only up to
the first incorrect step. This makes the comparison between outcome and process
supervision more straightforward. For correct solutions, both methods provide the
same information, namely that every step is correct. For incorrect solutions, both
methods reveal the existence of at least one mistake, and process supervision
additionally reveals the precise location of that mistake.

Example of answer labeled by PRM

19

ORM vs PRM Training

20

We train the large-scale PRM using the step-level labels in PRM800K. To ensure
the large-scale ORM baseline is as strong as possible, we train on 100 uniform
samples per problem from the generator.

This means the ORM training set has no overlap with PRM800K, and it is an order
of magnitude larger.

Although these two training sets are not directly comparable, each represents our
best attempt to advance the state-of-the-art with each form of supervision. We
note that training the ORM solely on PRM800K solutions would be problematic,
since our active learning strategy has heavily biased the dataset towards wrong-
answer solutions.

(Text from paper)

21

Discussion: What do you think could be a significant issue with
such trained ORM/PRMs?

Results

22

Note: Gap widens with more
of solutions to evaluate
(PRM’s effectiveness as helper
improves at scale)

OOD Generalization

23

ORM and PRM on a held-out set of 224 STEM questions, pulled from the most
recent AP Physics, AP Calculus, AP Chemistry, AMC10, and AMC12 exams.

Benefits of Process Supervision

24

Process supervision is more likely to produce interpretable reasoning, since it
encourages models to follow a process endorsed by humans. Process supervision is
also inherently safer: it directly rewards an aligned chain- of-thought rather than
relying on outcomes as a proxy for aligned behavior

This also seems to discourage reward hacking

Unlike many other settings, there is no alignment tax. In fact, an alignment benefit!

Discussion

25

What more would you have liked the OpenAI team to report in the paper?

26

Using RM’s to improve math reasoning

Best-of-N SFT

27

R: reward model (ORM or PRM) for the dataset, e.g., GSM8K

Method:
Generate many solutions for each question using M
Filter using RM to get a (likely) good solution for each question.
SFT on good (question, solution) pairs

M: Model to be improved

SFT performance (y-axis is log of # params)

28

Rejection Fine Tuning (RFT)

29

Similar to SFT, except use many models to generate solutions,
and use all solutions OK’ed by the RM

Diversity of solutions from different models seems to help learning over SFT

30

Automated training of PRM

Next time

