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Reasoning is hard

(e.g., science/math questions; research problems; Chess/(Go)

Scientists come up with many wrong
solutions before hitting upon the right one

Chess/Go players contemplate many
moves, looking ahead many steps

“Inference time compute”

Can we enhance LLLM reasoning
by allowing them more compute
steps at inference time”?




Background: RL ideas from Game Playing

(And how to think about language generation/reasoning as a policy)



Learning to play Go

—lo-rating of World champion: 3600

Vanilla AlphaGo’s rating (deep net to represent “policy

function”, i.e. next-move) 3000

Alphago rating with “inference-time compute™: 5000

Monte-Carlo Tree Search: many “policy ro
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Why this works: Local
Inconsistencies in policy
and value function get ironed
out via inference time roll-outs



Monte-Carlo Tree Search (MCTS)

(named by Remi Coulom 2006)

Wikipedia summary

The focus of MCTS is on the analysis of the most promising moves, expa
the search tree based on random sampling of the search space. The app
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Important caveat

Go-playing uses MCTS also to improve the policy and value function

Today we’re just considering MCTS ideas at inference time
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Current value function and policy

10x10 Gnd with Start and End Points and Zigzag Policy
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Why MCTS can improve over policy

3x3 Gnid Subportion

Policy rollout (i.e., lookahead with 3 moves)
reveals that diagonal move gives best
improvement in value according to current

@ Start (Dark Dot)
@) Diagonal Option

value function

Takeaway: It suffices to learn a policy
“In the right ballpark™ of optimum policy,

0 1 2 and then use search to Improve moves
at run-time

Some thought shows that limited lookahead cannot guarantee
optimum move in general, since that may require looking ahead a lot of moves



Pretraining budget of frontier LLMs =

Inference cost = $0.002 cents/token

Can we use more inference-time compute to enable better LLM reasoning?

THINKING,
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System 1 and 2 thinking

System 1 “Fast”

DEFINING CHARACTERISTICS
Unconscious
Effortless
Automatic

WITHOUT Self-Awareness
or Control

“What You See Is All
Therels”

P ROLE by

Assess the Situation
Deliver Updates

System 2 “Slow”

DEFINING CHARACTERISTICS
Deliberate and Conscious
Effortful
Controlled Mental Process

WITH Self-Awareness or
Control

Logical and Skeptical

b -

ROLE
Seeks New Information
Makes Decisions
A 7/
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LLM Generation = “Policy”

LLM as Next-Word Policy Generator

/ \ Value function = “quality” of response

* How do we learn a good value function?

/ \ / \ * Can we use policy rollouts at inference
time to improve value of the generated
response”?

happy apples bananas
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Pass@k metric

Pass@k
“Generate k answers to the query; pick the best.”
(e.g., Pass@5 often much better than Pass@1 )

PassRatio@K (when answer is a single word or number):
Generate K answers and determine the fraction that are correct

—valuating “Best” requires a reward Model for correctness/quality of math Q&A

Qs: What is an obvious idea for learning a “reward” function for math?
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Pass@k viewed as inference-time search

Pass@k
“Generate k answers to the query; pick the best.”
(e.g., Pass@5 often much better than Pass@1 )

—valuating “Best” requires a reward Model for correctness/quality of math Q&A

PassRatio@K (when answer is a single word or number):
Generate K answers and determine the fraction that are correct

Hurdle in learning reward function using naive SFT on human-labeled examples:

* Even strong models can’t reliably tell good answers from wrong
* Using wrong labels in SFT hurts performance super proportionately

Today’s examples (GSM8K and MATH) have autoverifiable answers



Potential power of best-of-k for math
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Figure 1: The orange star markers represent the ac-

curacy achieved by selecting the best response from
256 random generations of the LLaMA-2 7B model.

The high accuracy on the MATH (left) and GSM8K
(right) benchmarks (72.0% and 97.7%, respectively)
suggest that the LLaMA-2 7B already possesses strong
mathematical capabilities, although the stability in gen-
erating correct answers could be enhanced. This paper

Best-of-256 using Llama?2 7B
beats GPT4 (early version)

and custom math models

PassRatio@256 much worse:
49% on GSM8K, 8% on MATH

Pass@K — PassRatio@K = Theoretical

improvement from perfect reward model

Common 7B Language Models Already Possess Strong Math Capabilities

Chen Li'*, Weiqi Wang®*, Jingcheng Hu?*, Yixuan Wei’*,
Nanning Zheng', Han Hu*, Zheng Zhang**, Houwen Peng**
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Training Reward Model (RM) for math

Let’s Verity Step by Step

Hunter Lightman™ Vineet Kosaraju”™ Yura Burda™

Bowen Baker Teddy Lee Jan Leike John Schulman

Harri Edwards

Ilya Sutskever
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Outcome Supervision (ORM)

Given: GSM8K question, CoT answer, Final Answer.

Just a number

Goal: Train RM to say whether final answer is correct

Training data: usual +ve and -ve examples

Note: We saw O

KM implicitly in earlier settings such as

RLHF (i.e., preference pairs)
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Process Supervision (PRM)

Given: GSMB8K question, CoT answer, Final Answer

Goal: Give a reward 0/ 1/ -1 to each step I.e., (neutral/positive/negative)

The denominator of a fraction is 7 less than 3 times the numerator.
If the fraction is equivalent to 2/5, what is the numerator of the fraction?

() () @& Let's call the numerator x.

) () & So the denominator is 3x-7.
PRM800K: Dataset contains 800K step-level labels

() (&) & We know that x/(3x-7) = 2/5. _ _
provided by human raters across 75K solutions to

O/

@ ® © So 5x = 2(3x-7). 12K problems (MATH 8K training set + 4K test questions).
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PRKSOOK: Design Decisions

“Convincing solutions”: Those rated highly by our current best PRM

“Wrong-answer” : solutions that reach an incorrect final answer.
(note: final answer is a number or an expression; hence auto-checkable)

PRK800 uses Convincing Wrong answers (Generate N solutions per question,
and choose K wrong-answer solutions that were most convincing to human raters)

Process RM” (PRM) training: Train to predict (via log-likelihood loss)
the human annotation for each step

When we provide process supervision, we deliberately choose to supervise only up to
the first incorrect step. This makes the comparison between outcome and process
supervision more straightforward. For correct solutions, both methods provide the
same information, namely that every step is correct. For incorrect solutions, both
methods reveal the existence of at least one mistake, and process supervision
additionally reveals the precise location of that mistake.
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Example of answer labeled by PRM

Let
z® + 3z' — 4 = p)(z)po(z) - - - pi(),

where each non-constant polynomial p;(z) is monic with integer coefficients, and
cannot be factored further over the integers. Compute p,(1) + po(1) + -+ - + pe(1).

This problem is about factoring a polynomial over the integers, which can be a tricky task.

One possible strategy is to look for rational roots of the polynomial, using the rational root
theorem.

However, that would involve checking a lot of possible factors of —4, and there is no guarantee
that the polynomial has any rational roots at all.

Another possible strategy is to use some algebraic tricks to simplify the polynomial or reduce
its degree.

I notice that the polynomial has only even powers of z, so I can try to substitute y = z? and
see what happens.

Then the polynomial becomes y* + 3y? — 4, which is a quadratic equation in 2.

I can try to factor this quadratic equation by looking for two numbers that multiply to —4 and
add to 3.

Those numbers are 4 and —1, so I can write y* + 3y?> —4 = (y? +4)(y*> - 1).

Now I can substitute back z> = y and get z° + 3z* — 4 = (z* + 4)(z* - 1).

This looks promising, because I have reduced the degree of the factors from 8 to 4.

I can try to factor each of these factors further, using the difference of squares formula.

I can apply the difference of squares formula again to the last factor and get z® + 3z* — 4 =
(@2 +2)(z?2 - 2)(z®* + 1)(z + 1)(z — 1).

Now I have factored the polynomial completely into monic linear and quadratic factors with
integer coefficients.

These are the p;(x)’s that the problem is asking for.

To find the sum of their values at z = 1, I just need to plug in z = 1 into each factor and add
them up.

Simplifying, I get pi(1) + pa(L) + -+ + pe(1) = B)(=1)(2)2)(0).
Multiplying, T get pa(1) + pa(1) + -~ + pu(1) =O0.
P
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ORM vs PRM Training

(Text from paper)

We train the large-scale PRM using the step-level labels in PRM800K. To ensure
the large-scale ORM baseline is as strong as possible, we train on 100 uniform
samples per problem from the generator.

This means the ORM training set has no overlap with PRM800K, and it is an order
of magnitude larger.

Although these two training sets are not directly comparable, each represents our
best attempt to advance the state-of-the-art with each form of supervision. We
note that training the ORM solely on PRM800K solutions would be problematic,
since our active learning strategy has heavily biased the dataset towards wrong-
answer solutions.
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such trained O

RM/

D

Discussion: What do you think could be a significant issue with

RMSs?

21



Results
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Figure 3: A comparison of outcome-supervised and process-supervised reward
models, evaluated by their ability to search over many test solutions. Majority
voting is shown as a strong baseline. For N < 1000, we visualize the variance
across many subsamples of the 1860 solutions we generated in total per problem.
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OOD Generalization

ORM and PRM on a held-out set of 224 STEM questions, pulled from the most
recent AP Physics, AP Calculus, AP Chemistry, AMC10, and AMC12 exams.

ORM PRM Majority Vote # Problems

AP Calculus 68.9% 86.7% 80.0% 45
AP Chemistry 68.9% 80.0% 71.7% 60
AP Physics 77.8% 86.7% 82.2% 45
AMC10/12  491% 53.2% 32.8% 84
Aggregate 63.8% 72.9% 61.3% 234

Table 1: We measure out-of-distribution generalization using recent STEM tests.
We evaluate the outcome-supervised RM, the process-supervised RM, and ma-
jority voting using 100 test samples per problem.
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Process supervision is more likely to produce interpretable
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Unlike many other settings, there is no alignment tax. In fact, an alignment benefit!



DIScUussIion

What more would you have liked the OpenAl team to report in the paper”?
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Using RM’s to Improve math reasoning
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Best-of-N SFT

R: reward model (ORM or PRM) for the dataset, e.g., GSM8K
M: Model to be improved

Method:
Generate many solutions for each question using M
Filter using RM to get a (likely) good solution for each question.
SFT on good (question, solution) pairs




Acc
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Figure 3: The performance of SFT with different amounts of supervised data on GSM8K.
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Rejection FIne Tuning (RFT)

Similar to SFT, except use many models to generate solutions,
and use all solutions OK’ed by the RM

Diversity of solutions from different models seems to help learning over SFT

Setting 7B 7B-2 13B 13B-2 33B
Pretrain loss 1.8 1.75 1.73 1.68 1.62
ICL 11.0/18.1 14.6/- 17.8/29.3 28.7/- 35.6/53.1
SFT 35.9/48.7 41.6/55.4 43.0/55.2 50.0/61.7 54.6/-
RFT k = 100 41.7/52.7 47.5/58.7 49.1/59.9 354.8/65.4 54.5/-
Correct paths per question 53.3 60.8 62.5 71.6 88.7
Distinct paths per question 5.25 5.19 5.26 5.29 2.78

Table 1: The performance of RFT with £ = 100 on GSM8K compared with SFT and ICL. Distinct
path amount means distinct equation list amount here.



Next time

Automated training of PRM

Improve Mathematical Reasoning in Language
Models by Automated Process Supervision

Liangchen Luol”, Yinxiao Liul®, Rosanne Liul, Samrat Phatalel, Harsh Laral, Yunxuan Li2, Lei Shul, Yun
Zhu!l, Lei Meng?, Jiao Sun? and Abhinav Rastogi!
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